

Using a novel chamber to investigate the evolution of single plume from biomass burning

Dantong Liu

School of Earth Sciences, Zhejiang University

dantongliu@zju.edu.cn

Beijing workshop on laboratory facilities for cloud research

Global distribution of solid fuel burning emissions

East Asia importantly contributes to emissions from solid fuel burning

Emission inventory of residential solid fuel burning over the NCP

Solid fuel and burning phases

Wood burning

Purpose of solid fuel burning

Burning stoves

Burning Phase: Flaming and Smoldering

Flaming (FL) Smoldering (SM)

Organic Aerosol (OA) Inorganic Salt Soot Potassium Metal/Mineral

A typical burning cycle of solid fuel burning

Importance of evolution

How does biomass burning emission evolve in the atmosphere, and what extent can SOA be generated and what are the properties?

Hodshire. et al., 2019, EST

Emission: evaporation, rapid oxidation and condensation, secondary particulate matter formation. The burning phase affects the gas and particle precursors.

Plume Evolution Chamber

Structure of our novel-designed chamber

Pulley wheels (16)

The internal chamber is made of 0.05 mm PTFE film $(1.2 \times 1 \times 1.2 \text{ m})$. The external four sides (excluding the top and bottom) of the chamber are covered by transparent acrylic plates $(1.8 \times 1.3 \times 1.7 \text{ m})$.

Plume Evolution Chamber

Previous laboratory studies

- Emissions from different combustion phases cannot be effectively isolated.
- High levels of oxidants injected
- Artificial UV light

Novel-designed chamber

- Isolating single plumes from a certain combustion phase.
- Ambient air oxidants
- Solar radiation

Instrumentation

- PASS-3: absorption
- SP2: BC mass, size and mixing state
- AMS: non-refractory compositions
- SMPS: size distribution
- CO, NOx, O₃
- PTR-TOF-MS: VOCs

Evolution of Aerosol Chemical Properties

Evolution for burning phases and solar radiation

Oxidation of VOCs and aerosol

Evolution of VOCs

Furanic compounds: Important precursor

Oxidation products:

Organic aerosol oxidation

Causality for higher oxidation of smoldering OA

Seed particle effect Flaming Smoldering BC

- SM plumes produced more VOCs and semi-volatile VOCs, which can be condensed in a shorter time.
- FL plumes was dominated by BC but SM was dominated by OA.

Organic particle substrate may absorb or adsorb more gas and result in enhancement of condensation.

Dark ageing

No apparent OA/BC change during the dark. O:C consistently increased by 0.09 for FL dark, while without apparent change for SM dark.

Nitrate radicals (NO3-) oxidation

N-containing ions resulting from organic nitrate (ON)

Evolution of Aerosol optical Properties

Spectral absorption of BC and BrC

Contrasting features between burning phases

Evolution of mixed state of carbonaceous aerosols

Mixed state of black carbon and brown carbon

Refractive index RI=n+k *i*

Absorptivity of OA

Dash lines: Decreased absorptivity due to SOA formation

Absorptivity mapped on OA/BC

OA from flaming conditions showed a higher absorptivity than from smoldering conditions. Absorption parameters can be parameterized by OA / BC.

Conclusion

The near-source evolution of biomass burning emission from different burning phases should be considered.

- Smoldering plumes had faster secondary OA formation and higher oxidation than flaming.
- Absorbing OA (the brown carbon) from flaming conditions showed a higher absorptivity than from smoldering conditions.
- The absorptivity of OA had a half-decay time of 2–3 h due to SOA formation and photobleaching of chromophores.

Dantong Liu*, Siyuan Li, Dawei Hu, Shaofei Kong*, et al. Evolution of Aerosol Optical Properties from Wood Smoke in Real Atmosphere Influenced by Burning Phase and Solar Radiation, *ES&T*, 55(9), 5677–5688, 2021.

Siyuan Li, Dantong Liu^{*}, Dawei Hu, et al.: Evolution of organic aerosol from wood smoke influenced by burning phase and solar radiation, *JGR*, 126(8), 2021.

