

Observational, Numerical and Theoretical Analysis of Entrainment/Detrainment Processes in Low-Level Clouds

Chunsong Lu¹, Xiaoqi Xu¹, Yangang Liu², Lei Zhu¹, Shi Luo¹, Sinan Gao¹

1. Nanjing University of Information Science and Technology, China

2. Brookhaven National Laboratory, US

Importance of Clouds

https://giphy.com/search/cloud

https://en.wikipedia.org/wiki/Earth%27s_energy_budget

Clouds plays important roles in the earth-atmosphere system.

Entrainment/Detrainment

Entrainment/detrainment affects atmospheric phenomena of different scales.

Cumuliform Cloud

Scientific Questions

Question One: Microphysics

How does cloud microphysics respond to entrained

dry air?

Question Two: Dynamics

How fast is dry air entrained into cloud?

How fast is cloud detrained into environment?

Scientific Questions

Question One: Microphysics

How does cloud microphysics respond to entrained

dry air?

Question Two: Dynamics

How fast is dry air entrained into cloud?

How fast is cloud detrained into environment?

Entrainment-Mixing Mechanisms

Homogeneous

Extreme Inhomogeneous

Different mechanisms affect number concentration and radius.

Quantitative Description of Entrainment-Mixing

Effects of Different Cloud Droplet Spectra on Homogeneous Mixing Degree

negatively correlated.

Effects of Different Cloud Droplet Spectra on

Homogeneous Mixing Degree

When initial cloud droplet spectra are wide, volume-mean radius increases during entrainment-mixing and traditional homogeneous mixing degree is negative.

A new homogeneous mixing degree is defined, which works for both narrow and wide cloud spectra.

Luo, Lu, et al., JGR, 2021 10

Vertical Profile of Entrainment-Mixing Mechanisms

Project: Physics of Stratocumulus Top (POST) Region: West coast of California Type: Stratocumulus Time: July to August of 2008

Vertical Profile of Entrainment-Mixing Mechanisms

More inhomogeneous mixing near cloud top, because of smaller dissipation rate, larger entrained dry air and smaller relative humidity.

Scientific Questions

Question One: Microphysics

How does cloud microphysics respond to entrained

dry air?

Question Two: Dynamics

How fast is dry air entrained into cloud?

How fast is cloud detrained into environment?

Importance of Entrainment Rate

Entrainment rate significantly affects cloud development and lifecycle.

Importance of Detrainment Rate: Deep Convection

It is needed to consider the lateral detrainment, besides detrainment near the cloud top.

Importance of Detrainment Rate: Shallow Convection

Detrainment is critical for cloud mass flux.

Estimation and Parameterization of Entrainment Rate

- Method for estimating entrainment rate
 Lu et al., GRL, 2012a, 2012b, 2013
- Parameterization of entrainment rate
 Lu et al., JAS, 2016, GRL, 2018

Parameterization of Entrainment Rate

Parameterization of Entrainment Rate

A New Approach for Estimating Entr/Detr Rates

Norgren et al. (2016) can estimate gross entrainment/detrainment, but cannot estimate entrainment /detrainment rates.

$$\varepsilon = \frac{1}{M_{\rm c}} \frac{dM_{\rm e}}{dz} \qquad \delta = \frac{1}{M_{\rm c}} \frac{dM_{\rm d}}{dz}$$

h: Height above cloud base

 $m_{\rm a} = M_{\rm a} / M_{\rm c}$ $m_{\rm e} = M_{\rm e} / M_{\rm c}$ $m_{\rm d} = M_{\rm d} / M_{\rm c}$ Zhu, Lu, et al., GRL, 2021

20

Validation of the New Approach

Entrainment/detrainment rates can reproduce the observed moist static energy and total water in cloud. Zhu, Lu, et al., GRL, 2021

21

Summary

- Question One: Microphysics
- (1) Entrainment-mixing mechanisms are quantitatively described and parameterized.
- (2) A new homogeneous mixing degree is defined,
- which works for both narrow and wide cloud droplet spectra.
- (3) Entrainment-mixing becomes more inhomogeneous with
- the increasing height near stratocumulus top
- Question Two: Dynamics
- (1) Entrainment rate is estimated and parameterized.
- (2) A new approach is developed for estimating entrainment/ detrainment rates in shallow cumulus clouds.

Thank you for your attention!

Email: clu@nuist.edu.cn