Beijing Cloud Facility Workshop 2021/09/22 – 09/25

Construction of a new cloud physics experimental chamber (CPEC) in Korea

Joo Wan Cha¹/Seong Soo Yum²

Junshik Um³, Minsu Park², Belorid Miloslav¹, Ki Ho Chang¹, Chulkyu Lee¹, Jae Young Kim⁴, Seung Bok Lee⁴, Hyun-Kyoung Lee¹

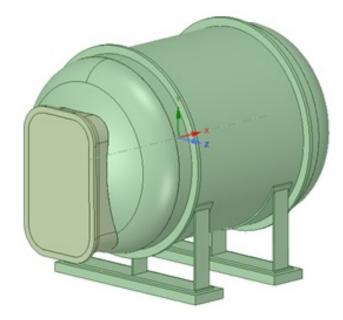
¹Convergence Meteorological Research Department, National Institute of Meteorological Sciences, Jeju, Republic of Korea ²Department of Atmospheric Sciences, Yonsei University, Seoul, Republic of Korea ³Department of Atmospheric Sciences, Pusan National University, Busan, Republic of Korea ⁴The Whale Inc., Anyang, Korea, Republic of Korea

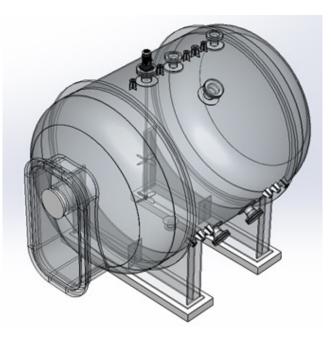
Introduction

- To better understand the aerosol-cloud-precipitation processes, studies using cloud chambers have been carried out at several institutions.
- A new Cloud Physics Experimental Chamber (CPEC) is being built by the National Institute of Meteorological Sciences (NIMS) of Korea.
- Since spatial scales of cloud processes are varied, no single cloud chamber is suitable for investigation of all scientific questions of the aerosol-cloud-precipitation processes.
- CPEC is being built for the following purposes:
 - To lead an advanced experimental studies on the various cloud processes that occur in atmospheric clouds.
 - To be a ground test-bed for real weather modification experiments using aircrafts.

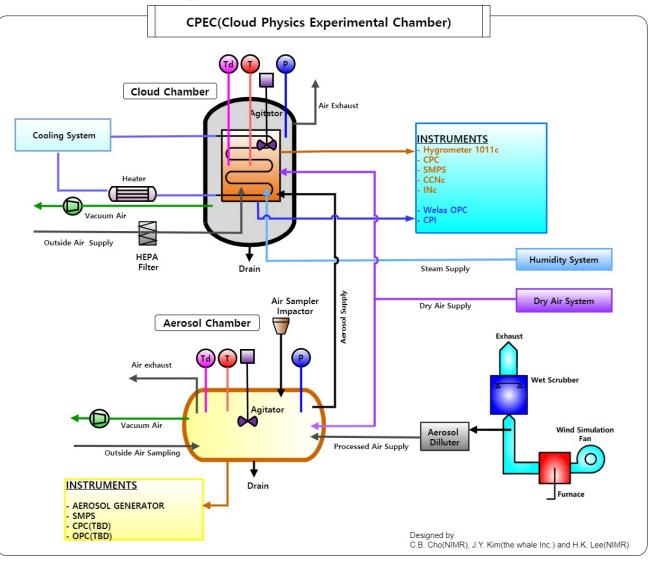


CPEC-cloud chamber


- Outer chamber: 5 m x 5 m, cylinder with rounded top/bottom
- Inner chamber: 3 m x 3 m, octagonal prism (~21 m³)



• Chamber size: 3 m x 3 m (cylindrical part only)



CPEC-diagram

Comparison with other cloud chambers

Name	Volume (m ³)	Туре	Location	Status
CPEC (cloud chamber)	21	Expansion with dynamic walls	Korea (NIMS)	2021 (expected)
AIDAc	84.5	Expansion	Germany (KIT)	1996-present
AIDAd	3.8	Expansion with dynamic walls	Germany (KIT)	2020-present
BACIC	70	Expansion	China (BWMO)	2017-present
Big Climate Chamber	3,200	Expansion	Russia (Inst. Experimental Meteorology)	1963-present
CESAM	4.2	Reaction chamber	France (LISA, CNRS)	2009-present
CLOUD	26.1	Reaction chamber/over- pressure expansion to atmos	Switzerland (CERN)	2006-present
LACIS-T	0.32 (2 m high)	Mixing wind tunnel	Germany (TROPOS)	2018-present
МІСС	18 (10 m high)	Fall chamber/expansion	United Kingdom (Manchester Univ.)	2009-present
MRI	1.4	Expansion with dynamic walls	Japan (Meteorological Research Inst.)	2005-present
π chamber	3.14	Convection/Expansion with dynamic walls	United States (Michigan Tech. Univ.)	2015-present

(Shaw et al., 2020)

Comparison with other cloud chambers

Name	Volume (m ³)	Туре	Location	Status
CPEC (cloud chamber)	21	Expansion with dynamic walls	Korea (NIMS)	2021 (expected)
AIDA	84.5	Expansion	Germany (KIT)	1996-present

- CPEC (cloud chamber) is designed as an adiabatic expansion type cloud chamber and has the ability to adjust wall temperatures dynamically to minimize moisture/heat flux from the warmer, ice-coated chamber wall.
- CPEC (cloud chamber) has a large volume compared to other expansion with dynamic walls type cloud chambers.

MICC	(10 m high)	chamber/expansion	(Manchester Univ.)	2009-present
MRI	1.4	Expansion with dynamic walls	Japan (Meteorological Research Inst.)	2005-present
π chamber	3.14	Convection/Expansio n with dynamic walls	United States (Michigan Tech. Univ.)	2015-present

(Shaw et al., 2020)

CPEC-specification

Cloud chamber			
Size	Outer chamber	5 m x 5 m	
5126	Inner chamber	3 m x 3 m	
Shape	Outer chamber	Cylinder	
Shape	Inner chamber	Octagonal prism	
Volume	Inner chamber	21 m ³	
	Outer chamber	Stainless steel	
Material	Inner chamber	Copper (Cu) / Stainless steel	
	Range	60 to -70°C	
Temperature range	Static stability margin	≤±0.3°C	
	Dynamic stability margin	≤±0.5°C	
	Range	1,013 to 30 hPa	
Pressure range	Margin of error	≤± 0.3 hPa	
Heating (cooling time		≤ 45 min (-70 to 60°C)	
Heating/cooling time		≤ 45 min (60 to -70°C)	
Meteorological Sciences		YONSEI UN	

Aerosol chamber				
Size		3 m x 3 m		
Material		Stainless steel		
	Range	1,013 to 30 hPa		
Pressure range	Margin of error	≤± 0.3 hPa		

CPEC-instruments

Instrument	Function	Year
Hygrometer (Buck research)	Measurement of water vapor	2021
CPC (TSI)	Measurement of aerosol number concentration	2021
Aerosol generator (Palas)	Generation of aerosols	2021
Welas OPC (Palas)	Measurement of particle size distribution 0.2–10 μm / 0.3–17 μm/ 0.6–40 μm / 2–100 μm	2021
SMPS (TSI)	Measurement of submicron aerosol size distribution	2022
CCN-200 (DMT)	Measurement of cloud condensation nuclei number concentration	2022
IN counter (TBD)	Measurement of ice nucleating particle	2022
CPI (SPEC)	Measurement of the size and shape of particles	2022

CPEC-construction

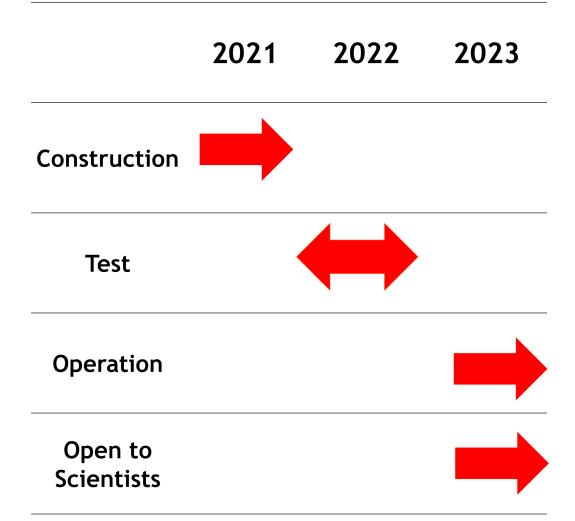
National Institute of Meteorological Sciences

🛞 YONSEI UNIVERSITY

Aerosol chamber

Cloud chamber

What to study?


- CCN and INP capability of atmospheric particles
- Evaluation of currently available seeding material
- Development of new seeding material and test
- Effects on cloud microphysical properties of anthropogenic air pollutants
- Aerosol-cloud-precipitation interactions
- Instrument intercomparison and calibration
- Collaborative studies with other cloud chamber groups

Contact Dr. Cha (jwcha@korea.kr)

if you would like to participate in CPEC experiments!

Thank You I